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Abstract

The rapid advancement of technology in genomics and targeted genetic manipulation has

made comparative biology an increasingly prominent strategy to model human disease pro-

cesses. Predicting orthology relationships between species is a vital component of compar-

ative biology. Dozens of strategies for predicting orthologs have been developed using

combinations of gene and protein sequence, phylogenetic history, and functional interac-

tion with progressively increasing accuracy. A relatively new class of orthology prediction

strategies combines aspects of multiple methods into meta-tools, resulting in improved pre-

diction performance. Here we present WORMHOLE, a novel ortholog prediction meta-tool

that applies machine learning to integrate 17 distinct ortholog prediction algorithms to iden-

tify novel least diverged orthologs (LDOs) between 6 eukaryotic species—humans, mice,

zebrafish, fruit flies, nematodes, and budding yeast. Machine learning allows WORMHOLE

to intelligently incorporate predictions from a wide-spectrum of strategies in order to form

aggregate predictions of LDOs with high confidence. In this study we demonstrate the per-

formance of WORMHOLE across each combination of query and target species. We show

that WORMHOLE is particularly adept at improving LDO prediction performance between

distantly related species, expanding the pool of LDOs while maintaining low evolutionary

distance and a high level of functional relatedness between genes in LDO pairs. We pres-

ent extensive validation, including cross-validated prediction of PANTHER LDOs and eval-

uation of evolutionary divergence and functional similarity, and discuss future applications

of machine learning in ortholog prediction. A WORMHOLE web tool has been developed

and is available at http://wormhole.jax.org/.

Author Summary

Identifying functionally equivalent proteins between species is a fundamental problem in
comparative genetics. While orthology does not guarantee functional equivalence, the
identification of orthologs—genes in different organisms that diverged by speciation—is
often the first step in approaching this problem. Many methods are available for predicting
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orthologs. Recent approaches combine methods and filter candidate predictions by “vot-
ing”—assigning confidence to ortholog pairs based on the number of predictions by inde-
pendent methods. Although voting is a heuristic, it maintains precision while increasing
recall. Here we employ machine learning to optimize voting by learning which methods
make better predictions and, in essence, giving those methods more votes. We present a
new tool called WORMHOLE that predicts a strict subclass of orthologs called least
diverged orthologs (LDOs) with a high level of functional specificity by learning features
of orthology that are encoded in the patterns of predictions made by 17 constituent meth-
ods. We validate WORMHOLE using multiple measures of evolutionary divergence and
functional relatedness, including community standards provided by the Quest for Ortho-
logs consortium. WORMHOLE’s particular strength lies in predicting LDOs between dis-
tantly related species, where orthology is difficult to identify and is of critical importance
for comparative biology.

Introduction

Comparative biology has become a central strategy in the study of human biology and disease.
The availability of powerful genetic tools and our ability to control experimental conditions in
model organisms often allows a much more detailed examination than directly studying a pro-
cess of interest in humans. In diverse areas of biology—aging, development, stem cell differen-
tiation, behavior—highly conserved molecular features have been described in model systems,
even highly evolutionarily divergent organisms, and translated into useful interventions in
humans. For example, the ability to delay aging by inhibition of the Target of Rapamycin
(TOR) kinase was first discovered in the single-celled budding yeast Saccharomyces cerevisiae,
and much of the work to characterize TOR signalling has been carried out in this system
(reviewed by Loewith and Hall [1]). Reduced TOR signalling has since been demonstrated to
increase lifespan in a range of model systems from worms to mice (reviewed by Cornu et al.
[2]). Rapamycin and other drugs targeting this system are now in clinical trials for cancer [3,4]
and show promise for other age-associated diseases, including Alzheimer’s disease [5]. Aging is
a particularly salient example demonstrating the power of comparative biology. Lifespan stud-
ies are much shorter, much less expensive, and therefore much more tractable in invertebrate
species than in vertebrates, allowing aging studies to be carried out more rapidly, on a larger
scale, and in greater molecular detail for the same resource investment. To reap the practical
benefits of invertebrate models in studying the genetics of human health, it is crucial to trans-
late molecular results from invertebrates into vertebrates.

A vital step in this translation is the identification of the gene or protein that fills the func-
tionally equivalent role in the target vertebrate species. Since functionally equivalent proteins
(FEPs) are difficult to predict directly, the most commonly used surrogate is orthology. Ortho-
logs are genes that derive from the most recent common ancestral gene by speciation (in con-
trast to paralogs; genes that derive from the most recent common ancestral gene by
duplication) [6]. Because orthology is defined by speciation, the evolutionary history separating
orthologous genes may include other categories of evolutionary event, such as duplication,
deletion, and de novo mutation in one or both lineages after the defining speciation event. In
addition to simple one-to-one mappings, these evolutionary processes allow for one-to-many
and many-to-many mappings between genes that define an orthologous group in different spe-
cies. The boundaries between orthologs and non-orthologs can be difficult to discriminate
based on readily measured features of genes, such as sequence composition, leading to a diffi-
cult bioinformatics problem. A subset of all orthologs are the least diverged orthologs (LDO),
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defined as the pair of genes within an ortholog group for two species that have accumulated the
fewest mutations after speciation and duplication-post-speciation events (i.e. have ‘diverged
the least’) [7]. The identification of LDOs is a sub-problem of the ortholog identification, but
its solution has many desirable properties. In particular, the gene pair in an ortholog group
with the least sequence divergence is the most likely to have been functionally conserved by
evolution [8,9]. More divergent gene pairs are more likely to have developed novel function,
particularly in gene families that have undergone numerous duplication events. In this study
we focused specifically on the identification of LDOs. The idea that orthologous genes tend to
be more functionally similar than non-orthologous genes is called the “ortholog conjecture”,
which states specifically that orthologs are more functionally similar than paralogs. There has
been recent debate surrounding this conjecture. Contrary to the ortholog conjecture, Nehrt
et al. [10] found that paralogs within either humans or mice were more predictive of gene func-
tion than orthologs between humans and mice based on comparison of microarray and gene
ontology (GO) data, suggesting that cellular context, rather than shared sequence, may be the
primary driver of functional evolution. However, bias in GO annotations tends to favor func-
tional similarity between paralogs [11], and subsequent studies using RNA-seq data [8] or
bias-corrected GO annotations [9] support the ortholog conjecture. Specifically, Chen and
Zhang [8] found that gene expression similarity between orthologs is significantly higher than
between paralogs across multiple tissue types, while Altenhoff et al. [9] found that functional
GO annotation similarity was higher between orthologs than paralogs, and increased weakly,
but significantly, with decreased sequence divergence, even across large evolutionary distance,
when the GO annotations were controlled for common biases. Thus, while orthologs and FEPs
are conceptually distinct, the preponderance of evidence suggests that they are related, and in
particular that identifying an ortholog as a first step toward identifying an FEP is warranted.
Because protein sequence ultimately determines function, the LDO—the ortholog with the
least divergence in sequence—is therefore a strong estimate of an FEP. Likewise, observing
high functional similarity between genes in different species provides evidence for, but does
not guarantee, shared evolutionary history.

The past decade has seen an explosion of new methodologies and tools designed to predict
orthologous genes between two or more species. The majority use one of two approaches:
graph-based or tree-based ortholog prediction. Graph-based algorithms begin with pairwise
alignments between all protein sequences from two species to estimate evolutionary distance
between each protein pair, followed by orthology prediction made using a range of clustering
criteria: reciprocal best hit (e.g. OMA [12], OrthoInspector [13], and InParanoid [14]), recipro-
cal smallest distance (e.g. Roundup [15]), best triangular hit (e.g. COG [16] and EggNOG
[17]), or Markov clustering (e.g. OrthoMCL [18]). Tree-based systems take advantage of our
understanding of evolutionary relationships between species, using simultaneous alignment of
sequences from many species to build phylogenetic trees and infer orthology relationships
based on tree structure. Variations on this approach are employed by many popular ortholog
prediction tools: Ensembl Compara [19], metaPhOrs [20], OrthoDB [21], PANTHER [22],
and TreeFam [23]. Other strategies (e.g. HomoloGene [24] and Hieranoid [25]) combine
aspects of both graph- and tree-based systems, progressively applying graph-based methods at
the nodes of a species tree to generate more accurate ortholog predictions while maintaining
the computational efficiency inherent to tree-based methods. A further alternative strategy is
to directly identify genes in a target system that fills a functionally equivalent role. For example,
the Isobase algorithm infers FEPs using both sequence information and functional information
encoded in protein-protein interaction (PPI) networks.

Each prediction algorithm uses a different methodology, producing overlapping but distinct
sets of predicted orthologs or FEPs and displaying different strengths and weaknesses in terms
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of performance for the particular objective of that algorithm. Several groups have combined
predictions from multiple sources in “meta-tools” to improve prediction performance. Shaye
and Greenwald [26] created OrthoList, a set of human-worm orthology relationships, by sim-
ply combining the predictions from four commonly used ortholog prediction tools (InPara-
noid, OrthoMCL, Homologene, and Ensembl Compara) to produce a system with high recall
(i.e. low false negative rate) while maintaining precision (i.e. low false positive rate) when tested
on a manually curated set of human-worm ortholog pairs. MetaPhOrs was constructed by col-
lecting phylogenetic trees from seven independent sources (PhylomeDB, Ensembl, TreeFam,
Fungal Orthogroups, EggNOG, OrthoMCL, and COG) and applying a common algorithm to
select orthologs between species, allowing improved ortholog prediction accuracy based on
cross-tree comparison [20]. The Drosophila RNAi Screening Center Integrative Ortholog Pre-
diction Tool (DIOPT) reports predictions from eight ortholog databases (Ensembl Compara,
Homologene, InParanoid, OMA, OrthoMCL, PhylomeDB, RoundUp, and TreeFam) and one
functional database (Isobase) between six species (human, mouse, zebrafish, fruit fly, nema-
tode, and budding yeast) and includes a confidence score based on the number of algorithms
predicting each pair, and a weighted score that takes into account functional similarity based
on GO term comparison [27]. The recently published Multiple Orthologous Sequence Analysis
and Integration by Cluster optimization (MOSAIC) combines ortholog predictions generated
by four methods (Multiparanoid, Threshold Block Aligner (TBA), six-frame untranslated
BLAST-like alignment tool (BLAT), and OMA) and applies a filtration process to optimize
pairwise alignment between members of each ortholog cluster [28]. Pereira et al. developed
Meta-Approach Requiring Intersections for Ortholog predictions (MARIO) to aggregate four
ortholog prediction methods (reciprocal best hit, InParanoid, OrthoMCL, and Phylogeny [29])
to identify high-specificity ortholog groups that were then analyzed by multiple sequence align-
ment and hidden Markov models to predict novel orthologs [30]. In each case, the meta-tool is
shown to improve prediction performance when compared to the individual input algorithms.
To date, all of these methods use the number of algorithms that predict an ortholog as a heuris-
tic to determine the confidence of a given prediction. However, while some use sophisticated
post-processing to improve performance, none take into account the individual performance
of each input algorithm when assigning confidence levels to aggregate predictions.

Here we present a novel strategy in this final category of meta-tools. The WORM-Human
OrthoLogy Explorer (WORMHOLE) predicts LDOs between species by employing machine
learning to differentially weight the output of 17 ortholog prediction strategies. WORMHOLE
falls into a subcategory of meta-tools that do not predict orthology de novo (others in this cate-
gory include OrthoList and DIOPT), but rather integrate information from multiple sources to
refine and extend predictions. Originally developed to identify orthologous genes between
humans and nematodes, we have expanded the method to include six species: Homo sapiens
(humans), Mus musculus (mice), Danio rerio (zebrafish), Drosophila melanogaster (fruit flies),
Caenorhabditis elegans (nematodes), and Saccharomyces cerevisiae (budding yeast). WORM-
HOLE considers the patterns of ortholog calls of the 17 constituent algorithms and identifies
signature patterns that correspond to likely LDOs. Specifically, WORMHOLE uses the
genome-wide predictions of LDOs from PANTHER (PANTHER LDOs) as a set of high-confi-
dence examples to train machine learning classifiers.

PANTHER makes de novo predictions of LDOs based on evolutionary relationships. We
expect that rigorous statistical criteria used by any de novo method will necessarily miss some
true LDOs, particularly in edge cases with difficult-to-parse evolutionary history or patterns of
sequence divergence (e.g. duplication-post-speciation events in both lineages). Machine learn-
ing provides a principled method to extend de novo predictions with new data. We used the
PANTHER LDOs to define positive and negative examples, but reserved judgment on genes
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for which PANTHER does not identify an LDO. The machine learning classifier then identified
a “signature” of LDO vs. non-LDO status from the PANTHER LDO examples that can be used
to infer LDO status for previously unclassified genes. WORMHOLE provides rigorous confi-
dence scores based on how strongly the pattern corresponds to the known PANTHER LDOs.
We present six findings: 1) The patterns of ortholog calls by the 17 constituent algorithms con-
tain sufficient information to strongly predict LDOs in the reference set. This is non-trivial
because, as discussed below, none of the input algorithms are designed to explicitly predict
LDOs. Nevertheless they encode LDO status in the patterns of their respective ortholog predic-
tions. 2) The use of support vector machine classifiers (SVMs) strongly improves LDO predic-
tion over simple voting, a baseline method used in other meta-tools. 3) This enhanced
prediction depends on the evolutionary distance between organisms with greater improvement
for distant comparisons, e.g. between vertebrates and invertebrates. 4) The WORMHOLE
SVMs expands the number of LDOs relative to the PANTHER LDO training set. The novel
LDOs maintain a similar evolutionary distance distribution and Basic Local Alignment Search
Tool protein (BLASTp) alignment score to the PANTHER LDO training set, indicating that
the novel predictions are indeed LDOs. 5) The WORMHOLE models trained on one pair of
species generalize well to other species pairs, suggesting that the WORMHOLE models are
identifying information about orthology in general, and not just between particular species
pairs. 6) The WORMHOLE predictions have high functional specificity by several criteria,
while making significantly more LDO calls than the PANTHER LDOs used to train the models.
This indicates that WORMHOLE has extracted functionally relevant information from the
constituent algorithms that is complementary to the PANTHER LDOs.

Results

Predicting least divergent orthologs using machine learning

Most novel ortholog prediction strategies seek to increase performance by expanding the scope
or improving the quality of the underlying sequence data, or through application of a new algo-
rithm. The wealth of ortholog prediction strategies now available opens the possibility of a two-
layer prediction model. To conceptualize this model, consider the individual pieces of underly-
ing biological and genetic information—gene and protein sequences, gene and protein interac-
tions, phylogenetic relationships between species—as first-order features (Fig 1A). Each of the
established ortholog prediction algorithms (Ensembl Compara, EggNOG, etc.) uses different
combinations of these first-order features to generate predicted ortholog relationships, forming
the first layer of prediction (Fig 1B). These algorithms generate a pool of candidate ortholog
predictions, and hence candidate LDOs, that can be considered novel second-order features
(Fig 1C). In WORMHOLE, we apply a second layer of prediction to refine these candidate
ortholog predictions to directly predict LDOs (Fig 1D). This refinement is accomplished by
generating a confidence score for each gene pair based on the pool of predictions and consider-
ing only those pairs that meet a minimum confidence threshold.

This multilayer approach requires three ingredients: (1) genome-wide candidate ortholog
predictions (i.e. second-order features) between the species of interest generated by a selected
set of first-layer algorithms, (2) a second-layer algorithm to classify each gene pair as either an
LDO or not based on the second-order features, and (3) a training dataset (reference set) com-
posed of well-defined examples of both LDO and non-LDO gene pairs, which is used to train
and test the second layer algorithm.

To generate a genome-wide candidate pool (ingredient 1), we collected all ortholog predic-
tions from 17 constituent algorithms between the selected species, representing a wide array of
different prediction strategies. There are more than 30 databases that predict orthologous or
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Fig 1. Schematic representation of the WORMHOLE LDO prediction strategy. (A) First-order features of
gene pairs (e.g. sequence comparison, phylogenetic history, and functional interaction) are used by Layer 1
algorithms (B) to generate candidate LDO (cLDO) predictions, which are considered second order features (C).
The second-order features are used by the WORMHOLE Layer 2 methods (voting or SVMs) (D) to select high-
confidence LDOs and filter out erroneous predictions.

doi:10.1371/journal.pcbi.1005182.g001
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functional relationships between species using different methodologies. In selecting algorithms
to include in WORMHOLE, we sought to sample as wide a variety of prediction strategies as
possible. We examined each database that we were able to locate and access online and
included the 13 data sources that met the following criteria: (1) the availability for download of
complete genome-wide ortholog predictions, (2) current ortholog prediction data (updated
since 2010), and (3) demonstrated performance in published literature. This set includes 5
graph-based strategies, 5 phylogeny-based strategies, 2 hybrid graph- and tree-based strategies,
and 1 PPI network-based strategy (Table 1). Because some projects identify multiple categories
of orthologs (e.g. EggNOG-COGs and EggNOG-KOGs), these 13 sources resulted in 17 pre-
dicted ortholog datasets (constituent algorithms). We assembled these predictions into a com-
mon database (the WORMHOLE database) and call these predicted orthologous gene pairs
candidate LDOs (cLDOs).

For a second layer algorithm (ingredient 2), we trained SVMs using the predictions of the
constituent algorithms. SVMs are machine learning classifiers that take as input a set of labelled
examples and a set of ‘features’ describing the examples and builds a mathematical model of
each class based on the relevant information within the features. In our case, we trained SVMs
on known LDO and non-LDO pairs using the orthology predictions of the 17 constituent algo-
rithms as features. To the SVM classifier, each cLDO is represented as a signature vector of
binary calls by the constituent algorithms (e.g. ‘00011011101010110’) with each digit repre-
senting the prediction made by a specific algorithm (1 = predicts orthology;0 = does not pre-
dict orthology).

The SVMs require a reference set of known LDOs and non-LDOs to use as training data
(ingredient 3). A well-defined reference set should: (1) be representative of the entire set of
“true” LDOs between the species considered, (2) include only high-confidence examples, and
(3) include examples of both LDO and non-LDO gene pairs. We selected the PANTHER LDO
dataset as the reference set for training the SVMs. PANTHER identifies orthologous gene pairs

Table 1. Data sources and access dates for the 17 ortholog datasets used to build the WORMHOLE database and train the WORMHOLE SVMs.

Data
Source

Ortholog Datasets Category Version Access
Date

Web Address

EggNOG EggNOG-COGs,EggNOG-KOGs,
EggNOG-NOGs

graph-based 4 11/28/2014 http://eggnog.embl.de/version_4.0.
beta/

Ensemble Ensembl Compara tree-based 77 11/28/2014 http://www.ensembl.org/biomart/

Hieranoid Hieranoid hybrid tree- and graph-
based

1 11/28/2014 http://hieranoid.sbc.su.se/

Homologene Homologene hybrid tree- and graph-
based

68 11/28/2014 http://www.ncbi.nlm.nih.gov/
homologene/

InParanoid InParanoid graph-based 8 11/28/2014 http://inparanoid.sbc.su.se/

Isobase Isobase PPI network-based 3 11/28/2014 http://groups.csail.mit.edu/cb/mna/
isobase/

MetaPhOrs MetaPhOrs tree-based 201405 11/28/2014 http://betaorthology.phylomedb.org/

OMA OMA graph-based March
2014

11/28/2014 http://omabrowser.org/oma/home/

OrthoDB OrthoDB tree-based 7 11/28/2014 http://cegg.unige.ch/orthodb7

OrthoMCL OrthoMCL graph-based 5 11/28/2014 http://www.orthomcl.org/orthomcl/

PANTHER PANTHER tree-based 9 11/28/2014 http://www.pantherdb.org/

RoundUp Roundup graph-based 2 11/28/2014 http://roundup.hms.harvard.edu/

TreeFam TreeFam tree-based 9 11/28/2014 http://www.treefam.org/

IsoRank IsoRankN-PPI,IsoRankN2-GI PPI and GI network-
based

3 2/13/2014 http://groups.csail.mit.edu/cb/mna/

doi:10.1371/journal.pcbi.1005182.t001
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based on species structure within algorithmically constructed phylogenetic trees. PANTHER
LDOs include all one-to-one orthologs and the single least divergent gene pair in one-to-many
and many-to-many ortholog groups within the broader PANTHER ortholog dataset. PAN-
THER LDOs consistently perform well, generating conservative predictions (i.e. fewer, more
closely related ortholog pairs) when compared to other ortholog datasets using the orthology
benchmarking service provided by Quest for Orthologs (QfO), a consortium that provides
community standards for developing and testing orthology prediction methodology (http://
questfororthologs.org/) [31]. Because the PANTHER LDO set is conservative, we anticipate
that it contains strong positive examples of LDOs and that we can identify gene pairs that
appear “LDO-like” with additional information not available to PANTHER. We grouped each
cLDO in the WORMHOLE database into one of three classes: 1) Known LDOs are cLDOs that
are contained in the PANTHER LDO set. 2) Known non-LDOs are cLDOs for which one or
both genes in the pair has a predicted ortholog in the PANTHER LDO set that is not the other
gene in the cLDO pair (i.e. is a multiple mapping for which the cLDO is not the least diverged
pair). 3) Unclassified cLDOs are cLDOs for which neither gene in the pair has a known LDO.
We trained the SVMs using only the known LDOs and known non-LDOs and reserved the
unclassified cLDOs for possible novel LDO identifications. These unclassified cLDOs are
exactly the edge cases where PANTHER can potentially be extended.

Prediction performance is species-dependent

We trained an independent SVM for each pair of query and target species using the predictions
made by the 17 constituent algorithms as features and the PANTHER LDOs as a reference set
for classification. As a baseline aggregation strategy to benchmark the SVM performance we
used simple voting—a straightforward tally of the number of constituent algorithms that pre-
dicted a cLDO—and ranked cLDOs by their vote counts. We employed nested cross-validation
to ensure that the SVM models were not overfitting the training data (see Materials and Meth-
ods). A summary of the number of genes, number of ortholog pairs, and genes with multiple
ortholog mappings across species is provided in Table 2, and for each species combination in
S1 Table.

As expected, the SVM models always outperformed the constituent algorithms and simple
voting at predicting PANTHER LDOs in terms of precision (P, the fraction of predicted LDOs
that are known LDOs) and recall (R, the fraction of known LDOs that are contained in the pre-
dicted LDOs) (Fig 2A and S1 Fig). This is because none of the constituent algorithms were
designed to directly predict LDOs. The constituent algorithms display a wide range of perfor-
mance at predicting PANTHER LDOs and none achieve as high performance as WORMHOLE
at predicting PANTHER LDOs. While each algorithm performs well at the prediction task for
which it was designed (e.g. prediction of orthologs from direct comparison of sequence, predic-
tion of functional equivalence, identification of ortholog group with respect to a specific most
recent common ancestor), the performance at predicting PANTHER LDOs depends on the
similarity between PANTHER LDOs and the algorithm-specific design goal. PANTHER LDOs
are a particularly conservative subset of ortholog predictions, and we observe that more conser-
vative algorithms (e.g. Roundup) tend to achieve high precision and recall (Fig 2A and S1 Fig),
while more permissive algorithms (e.g. eggNOG-KOGs; clusters of orthologs defined with
respect to the most recent common ancestor, MRCA, for all eukaryotic species) tend to display
high recall at the cost of low precision at PANTHER LDO prediction. PANTHER, by defini-
tion, has perfect recall of PANTHER LDOs (Fig 2A). The range of performance represented
among algorithms is important, providing the SVM classifiers with a diverse set of features
from which to discern “LDO-like” gene pairs and optimize LDO-prediction performance. The
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improved performance of WORMHOLE at predicting PANTHER LDOs demonstrates that
WORMHOLE is able to consistently learn such structure, despite none of the constituent algo-
rithms being designed to predict LDOs per se.

Identifying LDOs is of particular importance in distantly related species where evolutionary
time has resulted in greater sequence divergence between orthologs, obscuring the lineal rela-
tionship between genes. In Fig 2 we examine the behavior of the SVMs as a function of the evo-
lutionary distance between organisms. The set of species compared in WORMHOLE includes
three vertebrate species (humans, mice, and zebrafish) and three invertebrate species (fruit
flies, nematodes, and yeast). The three vertebrate species are substantially more closely related
to each other than any vertebrate species to any invertebrate species, or any of the invertebrate
species to one another. This allows LDO predictions to be grouped into those between closely
related species (vertebrate-vertebrate) and more distantly related species (invertebrate-inverte-
brate and vertebrate-invertebrate). Fig 2A presents the performance of the SVM at predicting
known LDOs as compared to each constitutive algorithm and simple voting. For each compari-
son the SVM has higher precision at every value of recall than simple voting or any of the con-
stituent algorithms. Vertebrates are closely related evolutionarily; as a consequence the
constituent algorithms already perform well and simple voting or the SVM yield only marginal
improvement. This is ultimately due to the clarity of orthology relationships in closely related
species; most orthologs are one-to-one mappings with relatively little sequence divergence. In
contrast, the invertebrate species are each distantly related from each other and from the verte-
brate species and the PR-curves show dramatic improvement in classification by the SVMs
over voting and the constituent algorithms.

Table 2. Summary of ortholog datasets in the WORMHOLE database.

Label # Ortholog
Pairs

# Genes # Genes with Multiple
Orthologs

Mean # Orthologs
per Gene

% Genes with Multiple
Orthologs

% Least Evolutionarily
Distant Gene Pairs

PANTHER LDOs 157,222 157,222 0 1.00 0.0% 87.2%

WORMHOLE
LDOs

256,352 211,587 26,306 1.21 12.4% 78.9%

WORMHOLE
RBHs

185,088 183,504 545 1.01 0.3% 88.7%

Voting 229,703 196,008 23,007 1.17 11.7% 82.0%

eggNOG-COGs 1,696,166 208,958 116,550 8.12 55.8% 12.0%

eggNOG-KOGs 9,436,066 317,809 204,709 29.69 64.4% 3.3%

eggNOG-NOGs 503,512 224,739 89,303 2.24 39.7% 41.8%

Ensembl
Compara

463,438 263,162 61,521 1.76 23.4% 52.5%

Hieranoid 160,038 91,169 26,912 1.76 29.5% 60.3%

HomoloGene 191,608 157,220 11,615 1.22 7.4% 82.4%

InParanoid 489,968 229,402 44,442 2.14 19.4% 43.0%

Isobase 143,994 119,272 15,327 1.21 12.9% 63.7%

IsoRankN-PPI 372,420 316,516 38,748 1.18 12.2% 52.5%

IsoRankN2-GI 320,396 278,375 30,015 1.15 10.8% 46.9%

metaPhOrs 487,498 258,822 67,885 1.88 26.2% 44.1%

OMA 209,684 163,945 18,464 1.28 11.3% 72.4%

OrthoDB 2,095,364 230,220 118,620 9.10 51.5% 10.7%

OrthoMCL 543,490 228,942 75,884 2.37 33.1% 42.1%

PANTHER 743,310 295,836 101,785 2.51 34.4% 34.1%

Roundup 198,832 184,305 4,316 1.08 2.3% 88.0%

TreeFam 366,674 239,643 57,222 1.53 23.9% 58.2%

doi:10.1371/journal.pcbi.1005182.t002
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In order to normalize the outputs to make comparisons between groups, we scaled the out-
put scores of the SVMs to the interval [0, 1] so that 0 and 1 represent the extremes of low and
high prediction confidence, respectively (see Materials and Methods). We term the scaled con-
fidence score the WORMHOLE Score. To allow direct comparison to our selected baseline, we
similarly scaled the number of votes received by each algorithm to the Vote Score. A WORM-
HOLE or Vote Score of 0.5 is the point where the harmonic mean of precision and recall (F) is
maximized. This point occurs at the “shoulder” of the PR-curve (Fig 2A) and denotes a conve-
nient threshold of simultaneously high precision and recall. Fig 2B presents the range of F-val-
ues achieved by each constituent algorithm, simple voting, and the SVMs across species
combinations. While simple voting generally outperforms the constituent algorithms, specific
algorithms achieve greater performance in some cases, particularly when predicting LDOs
between yeast and other species (S1 Fig). Indeed, the median F achieved by OrthoMCL
between invertebrate species is 1.7% higher than simple voting (Fig 2B and S2 Table). In the
vertebrate-vertebrate and vertebrate-invertebrate comparisons, simple voting achieves a
median F 5.6% and 4.5% higher than the nearest constituent algorithm, respectively. In con-
trast to simple voting, the SVMs consistently outperform all constituent algorithms and simple
voting, displaying median F 22.3%, 11.3%, and 1.4% higher than the nearest constituent algo-
rithm at predicting LDOs between invertebrate-invertebrate, vertebrate-invertebrate, and ver-
tebrate-vertebrate species, respectively (Fig 2B and S2 Table).

The ability of the SVM models to improve performance relative to voting appears dependent
on the range of precision and recall represented in the underlying first-layer algorithms for a given
species combination. Species combinations with little variation in recall in particular (e.g. human-
to-zebrafish predictions, S1E Fig), result in little or no improvement in SVM performance over
voting, while combinations with wide variation in both performance metrics see a much larger
improvement from the SVM classifiers (e.g. human-to-worm predictions, S1E Fig).

As a measure of the generalizability of the WORMHOLE SVMs, we examined the ability of
a model trained on one pair of species (e.g. human-worm) to predict orthologs between each
other pair of species. While optimum performance was achieved when a model was trained
and tested on the same species pair, performance was surprisingly consistent across species
combination (Fig 3 and S3 Table). Two species combinations were an exception to this pattern.
Models trained on human-mouse and, to a lesser extent, mouse-zebrafish reference LDOs dis-
played reduced performance relative to the other models when applied to predict LDOs in
other species combinations. Humans and mice are the most closely related species examined
and have the best annotated and least divergent ortholog datasets. We speculate that the rela-
tively poor performance of human-mouse trained SVM models at predicting LDOs in other
species is a result of the limited diversity in human-mouse ortholog prediction among constitu-
ent algorithms (S1E and S1F Fig), limiting the information available to the SVM classifiers
about general orthology.

Fig 2. WORMHOLE SVMs improve prediction of PANTHER LDOs over constituent algorithms and voting to a degree dependent on the
evolutionary separation of the compared species. (A) Precision-recall performance charts for PANTHER LDO predictions made between
vertebrate and invertebrate species separated into categories based on evolutionary distance. Points or lines represent the mean performance of the
17 constituent algorithms (black), BLASTp reciprocal best hits (RBHs) (red), voting (green), WORMHOLE SVMs (blue), or WORMHOLE RBHs
(cyan) at predicting PANTHER LDOs across the 10-folds of the outer cross-validation (see Materials and Methods). WORMHOLE RBHs are
reciprocal best hits selected based on the WORMHOLE Score and are introduced later in the Results section. Error bars and colored regions
represent standard error of mean for precision and recall across folds (due to the large number of gene pairs, error bars and regions are small and fall
within the width of the point or line in most cases). Lines are generated by sampling the complete range of possible threshold values for each
confidence score type. Color-matched points indicate the performance for specified threshold values (blue numbers) on each line. (B) Box and
whisker plot representing the harmonic mean of precision and recall for each of the 17 constituent WORMHOLE algorithms, voting, BLASTp RBHs,
WORMHOLE SVMs, and WORMHOLE RBHs when predicting PANTHER LDOs for each pair of query and target species. Ortholog prediction
methods are ordered by median harmonic mean. For voting, SVMs, and WORMHOLE RBHs, values represent the maximum harmonic mean for
each pair of query and target species (WORMHOLE Score� 0.5).

doi:10.1371/journal.pcbi.1005182.g002
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To further examine the relationship between models trained on different pairs of species, we
next examined the variation in model parameters across species combinations. Each SVM is
parameterized by a set of weights assigned to predictions made by each constituent algorithm
that define the classifier (see Materials and Methods). While the weights differ across species
pairs, the weight vectors are correlated (mean Pearson coefficient = 0.54, standard devia-
tion = 0.21, Fig 4A), indicating that there are global trends for particular constituent algorithms
to have high or low weight across species combinations. This trend is shown in Fig 4B. As
expected, PANTHER receives the highest median weight. While the constituent algorithms
were developed independently, all work from similar source data and many employ related
strategies to predict orthologs. As a consequence, predictions between specific tools can be
highly correlated. Providing prediction data from correlated algorithms introduces redundant
information that results in over-representation in the case of simple voting. The SVMs respond
to correlation by proportionally reducing the weight given to the predictions from correlated
algorithms. For example, predictions made by Homologene and OMA are correlated (Jaccard
index = 0.46, S4 Table). We speculate that this results in OMA receiving relatively low, some-
times even negative, weight, particularly in species combinations where Homologene/OMA
predictions are not well suited to predicting PANTHER LDOs. Along the same lines, WORM-
HOLE considers predictions from metaPhOrs, which itself is a meta-predictor incorporating
sequence data from several of the other WORMHOLE constituent algorithms. As expected,
metaPhOrs predictions correlate well with most of these tools, including Ensembl Compara
(Jaccard index = 0.37), TreeFam (Jaccard index = 0.35), and EggNOG-NOGs (Jaccard
index = 0.29), while less strongly with others (OrthoMCL; Jaccard index = 0.13) (S4 Table).
Higher weight is given to metaPhOrs than any of the three highly-correlated algorithms that
represent metaPhOrs source data (Fig 4B), indicating that the WORMHOLE SVMs are
accounting for the correlation in assigning weights.

WORMHOLE predictions expand LDO pool relative to the training set

WORMHOLE builds an image of what an LDO “looks like” by examining the PANTHER
LDOs from the perspective of the amalgamated calls of the constituent algorithms. It then
scans the collection of all cLDOs to identify novel gene pairs that fit that learned image. When

Fig 3. Performance of WORMHOLE SVMs generalizes across species. Box and whisker plot representing the harmonic mean of precision and
recall for each WORMHOLE SVM trained on PANTHER LDOs between one pair of query and target species when applied to predict PANTHER
LDOs between each other pair of query and target species. Values represent the maximum harmonic mean for each pair of query and target species
(WORMHOLE Score� 0.5). Training data sets are ordered by median harmonic mean. The box labelled "same pair" shows the performance of each
model when applied to predict LDOs within the same species pair used to train that model (with cross-validation).

doi:10.1371/journal.pcbi.1005182.g003
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applied across the genomes in question, we expect WOMRHOLE to capture an expanded set
of LDOs that includes the majority of the PANTHER LDOs, as well as novel gene pairs. This is
indeed what we observe (Fig 5A, Table 3). Importantly, WORMHOLE excludes a large portion
of the broader PANTHER database that is not included in the PANTHER LDO set, removing
the majority of the one-to-many and many-to-many gene-combinations. Importantly, the
WORMHOLE classifier considers only the predictions made by the 17 constituent algorithms
and is blind to the number of cLDOs corresponding to a specific query gene. As a consequence,
WORMHOLE can generate multiple LDO predictions for a single query gene if there is suffi-
cient evidence from the constituent algorithms. The number of query genes that generate mul-
tiple LDO predictions within a target species decreases as the WORMHOLE score threshold is
increased (Fig 5B). Using a threshold of 0.5, WORMHOLE produces multiple LDO predictions
for 12.4% of genes (Fig 5B and Table 2). Within the subset of genes with multiple LDO predic-
tions, PANTHER LDOs receive higher WORMHOLE scores than gene pairs not in the PAN-
THER LDOs (Fig 5C), indicating that WORMHOLE predicts known LDOs with higher
confidence than non-LDOs or novel LDOs.

To generate a high-confidence subset of the WORMHOLE LDOs that more closely matches
the strict definition of an LDO, we identified WORMHOLE reciprocal best hits (RBHs). A
WORMHOLE RBH is a predicted LDO with a WORMHOLE Score of at least 0.5 for which
each gene in the pair receives the highest WORMHOLE Score when the other gene is queried
(analogous to BLASTp RBHs). WORMHOLE RBHs are similar to PANTHER LDOs in that
each gene in one organism will map to a single gene in the other organism. Comparing
WORMHOLE RBHs to PANTHER LDOs, the WORMHOLE RBHs reproduce 81.7% of origi-
nal PANTHER LDOs, but expand the total number of predicted LDOs by 17.7% (Table 3).

Fig 4. Weights given to constituent algorithm predictions by WORMHOLE SVMs are correlated across species comparisons. (A) Distribution
of Pearson correlations between weight vectors across models trained on different pairs of query and target species show reasonable concordance
across species pairs (mean = 0.54), with considerable variation (standard deviation = 0.21) indicating species-pair-specific structure in the models. (B)
Box and whisker plot of the weights given to predictions made by each constituent algorithm by WORMHOLE SVMs trained on each pair of query and
target species show that each constituent algorithm has relatively consistent weight within each species pair comparison. Note that PANTHER has the
highest average weight, as expected. Ortholog prediction methods are ordered by median SVM weight.

doi:10.1371/journal.pcbi.1005182.g004
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This trend is reproduced for each comparison between vertebrates and invertebrates (Table 3).
Note that in a small number of cases, multiple LDOs are predicted for a single query gene with
identical WORMHOLE scores, preventing WORMHOLE from distinguishing a single RBH
(Table 2). In these few cases, both predicted genes are included in the RBH category. When
applied to predict PANTHER LDOs, the WORMHOLE RBHs produce similar performance to
the unmodified WORMHOLE SVMs with a WORMHOLE Score of 0.75 or greater (Fig 2A).

Fig 5. WORMHOLE SVMs reproduce the majority of PANTHER LDOs while expanding the total number of LDOs. (A) Venn diagrams
displaying the relative number of gene pairs in PANTHER, PANTHER LDOs, WORMHOLE (WOMRHOLE score� 0.5). Outer circles represent the
complete set of gene pairs predicted by all of the constituent algorithms. Circle areas are proportional to the number of gene pairs in each data set.
(B) The number of query genes with multiple LDO predictions by WORMHOLE SVMs as a function of WORMHOLE Score threshold. (C) Box and
whisker plot representing the range of WORMHOLE Scores assigned to PANTHER LDOs or non-PANTHER LDOs (gene pairs in the
WORMHOLE database but not in the PANTHER LDO reference set) within the set of genes with multiple LDO predictions by the WORMHOLE
SVMs (WORMHOLE score� 0.5).

doi:10.1371/journal.pcbi.1005182.g005

Table 3. Comparison between PANTHER and WORMHOLD LDO sets.

Query
Species

Target
Species

# LDOs in
PANTHER only

# LDOs in
WORMHOLE RBHs
only

# LDOs in PANTHER
and WORMHOLE RBHs

% PANTHER LDOs
Represented in
WOMRHOLE RBHs

% Expansion of LDOs
by WORMHOLE RBHs

all all 28832 56698 128390 81.7% 17.7%

invertebrate invertebrate 3260 4805 13847 80.9% 9.0%

vertebrate vertebrate 6928 22748 63428 90.2% 22.5%

vertebrate invertebrate 18644 29145 51115 73.3% 15.1%

doi:10.1371/journal.pcbi.1005182.t003
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WORMHOLE LDOs and RBHs have low evolutionary distance

By definition, the evolutionary divergence between genes in an LDO pair should be less than
that between each gene in the pair and all other genes in the target genome. To evaluate the
divergence of WORMHOLE LDOs and RBHs relative to PANTHER LDOs, we calculated evo-
lutionary distance between all gene pairs for each species combination. We further examined
alignment quality for each gene pair by calculating BLASTp bit scores. The set of all WORM-
HOLE LDOs and the set of novel LDOs predicted by WORMHOLE but not present in the
PANTHER LDO training set both produce a similar distribution of evolutionary distance and
bit score to the PANTHER LDOs (Fig 6). While the WORMHOLE SVMs are trained to predict
LDOs based on the PANTHER LDOs, a subset of the PANTHER LDOs are excluded by the
WORMHOLE SVMs. Gene pairs in this set of excluded PANTHER LDOs had markedly higher
evolutionary distance and lower BLASTp bit scores than the WORMHOLE or PANTHER
LDOs (Fig 6), indicating that the WORMHOLE SVMs specifically trimmed distantly related,
low-confidence gene pairs from the PANTHER LDO dataset. A similar pattern was observed
for WORMHOLE RBHs (S2 Fig). The percentage of WORMHOLE RBHs and PANTHER
LDOs that identify the least evolutionarily distant gene is similar (Table 2, S1 Table). As
expected, this percentage is lower for the broader category of all WORMHOLE LDOs that
receive a minimum WORMHOLE Score of 0.5, which includes multiple LDO mappings for
some genes (Table 2, S1 Table).

Evaluating functional conservation

Orthology is an evolutionary concept and does not necessarily imply that a pair of genes will be
functionally related. However, orthologous genes, and in particular LDOs, are often functionally
similar or equivalent, and ortholog prediction is commonly used as a starting point for identify-
ing the gene or genes in a new species that fill an equivalent functional role as a gene in another
species where the role is known. To assess the ability of WORMHOLE to identify functionally-
related ortholog pairs, we measured the performance of the WORMHOLE SVMs at predicting
Functional Orthologs from Swissprot Text Analysis (FOSTA) FEP pairs. The FOSTA database
contains high confidence FEPs based on text analysis of Swiss-Prot annotations and thus repre-
sents an assessment of functional equivalence at a high level of manual curation by experts [32].
Voting improves prediction of FOSTA FEPs relative to the constituent algorithms, with SVMs
giving an additional improvement in precision, recall, and harmonic mean of precision and recall
(Fig 7). As observed in the ortholog reference dataset, WORMHOLE adds almost no benefit to
FEP predictions between closely related species, while performance is greatly improved in more
distantly related species (Fig 7B and S3 Fig). In FEP prediction between vertebrate species (Fig
7A), and predictions between humans and mice in particular (S5E and S5F Fig), many of the
first-layer algorithms produce nearly perfect performance, leaving no room for improvement. In
contrast, prediction of FEPs between invertebrate species, or between vertebrates and inverte-
brates, receives a substantial benefit from the SVM models relative to simple voting, improving
both precision and recall by more than 5% in most cases and more than 10% for certain species
combinations (S3 Fig). Performance statistics for WORMHOLE, voting, and each constituent
algorithm at predicting FOSTA FEPs is provided in S5 Table.

The QfO consortium provides a set of tools for benchmarking ortholog prediction datasets.
One of these tools calculates gene ontology (GO) term conservation between gene pairs, an
established metric of functional relatedness [33]. We used this service to assess the average
functional relatedness between WORMHOLE-predicted LDOs as compared to predictions
made by each of the constitutive algorithms and to PANTHER LDOs across the six examined
genomes. WORMHOLE consistently maintained a similar level of functional relatedness
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between predicted gene pairs, but identified more gene pairs, as compared with the PANTHER
LDOs (Table 4 and Fig 8). In invertebrate-invertebrate comparisons, WORMHOLE achieves
nearly identical GO term conservation scores to PANTHER LDOs. In the vertebrate-vertebrate
and vertebrate-invertebrate comparisons, WORMHOLE functional conservation is slightly
decreased relative to PANTHER LDOs, but is higher than all methods that call a similar num-
ber of pairs. A similar result holds when comparing enzyme classification numbers (EC),
which depend strictly on the catalyzed chemical reaction, between enzyme LDO pairs (Table 4,
S4 Fig). The WORMHOLE RBHs receive similar functional relatedness and enzyme conserva-
tion scores to the PANTHER LDOs–and higher mean scores in invertebrate comparisons–
while generating substantially more LDO predictions (Table 4, Fig 8, S4 Fig). A third measure
evaluates the discordance between species and gene phylogenetic trees based on uploaded
ortholog pairs [33]. Similar to GO term conservation, WORMHOLE expands the number of
represented gene trees while maintaining low species-gene tree discordance and limiting the
number of gene trees that do not match the phylogenetic structure of the species tree (S5 Fig).

The combined ability of WORMHOLE to improve FEP prediction and expand the pool of
LDOs while maintaining functional relatedness shows that, despite non-one-to-one mapping
of genes, WORMHOLE predictions are well tuned to gene function. This is demonstrated by
the more restricted WORMHOLE RBHs, which maintain identical, or slightly better, func-
tional relatedness to PANTHER LDOs while generating a larger pool of predicted LDOs. This
implies that the WORMHOLE SVMs are sensitive to gene function.

Novel predicted LDOs are high quality candidates

To illustrate the type of LDO predicted by WORMHOLE in difficult “edge cases”, we manually
inspected a set of human-to-worm LDO predictions. Specifically, we examined genes that the
WORMHOLE SVMs strongly selected (WORMHOLE RBHs with WORMHOLE
Score> 0.75) but were missed by simple voting (Votes < 7, Vote Score< 0.25); 17 genes fit
these criteria (Table 5). As a metric of sequence conservation, we conducted protein BLASTp
for each query gene against the target genome, and each target gene against the query genome
(Table 5). Of the 17 human genes queried, 5 had PANTHER LDOs in worm. In all five cases,
WORMHOLE predicted the same worm gene as PANTHER. Four of these genes also were the
BLASTp RBH between human and worm. In the remaining case (human gene CPLX2), both
WORMHOLE and PANTHER identify the worm gene cpx-1, while a BLASTp of cpx-1 against
the human genome points to CPLX1.

In addition to the five gene pairs that the PANTHER LDOs called, WORMHOLE identified
12 novel LDOs that were not PANTHER LDOs (Table 5). Of these novel LDOs, 9 represent the
BLASTp RBH for the query gene examined. In one of the three remaining cases, the human gene
queried, RP11-343C2.11, overlaps nearly completely with another human gene, VPS4A. VPS4A is
a paralog to the BLASTp RBH, VPS4B. This overlap suggests that RP11-343C2.11 may be an arti-
fact in the human genome used by the constituent algorithms predicting the gene pair. In another
remaining case (human gene TNNI1), multiple duplication-post-speciation events have occurred
between human and worm, and WORMHOLE identified one member of a closely related group
of genes (tni-4) instead of another that is the BLASTp RBH (unc-27/tni-2).

Fig 6. WORMHOLE identifies LDO pairs with a similar distribution of BLASTp alignment quality and evolutionary
distance to the PANTHER LDOs and excludes low-scoring PANTHER LDOs. Box and whisker plots representing
BLASTp Bit Score (A) or evolutionary distance (B) for alignments between longest protein isoforms for genes in each gene
pair in the indicated ortholog dataset. Novel WORMHOLE LDOs are gene pairs predicted by WORMHOLE that are not
present in the PANTHER LDO training set. Excluded PANTHER LDOs are gene pairs in the PANTHER LDO training set
that are excluded by WORMHOLE.

doi:10.1371/journal.pcbi.1005182.g006
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We next examined evolutionary distance for each gene pair. In the case of human CPLX1/2
and worm cpx-1/2, CPLX2 is less evolutionarily distance from cpx-1 than CPLX1, despite the
failure of BLASTp to identify this pair as an RBH, suggesting that WORMHOLE is opting for
the least divergent gene pair in this case. In contrast, the worm gene heh-1 is identified as the
WORMHOLE RBH, the PANTHER LDO, and the BLASTp RBH, but not the least evolution-
arily distant gene (Table 5). Similarly, only 3 of the 12 novel WORMHOLE LDOs represent the
reciprocal least evolutionarily distant gene between humans and worms. Which metric is “cor-
rect” in these cases is unclear, and phylogenetic reconstruction often does not provide addi-
tional insight. Many of these edge cases represent phylogenetic trees where gene duplication
has occurred in both species more recently than the orthology-definingspeciation event (e.g.
CPLX2/cpx-1 and TNNI1/tni-4). When this occurs, a single gene in one lineage will always be
evolutionarily closer to all genes in the other lineage from the perspective of sequence diver-
gence. For example, the CPLX2 sequence has diverged less from both cpx-1 and cpx-2 than
CPLX1. Other gene pairs belong to families with an even more complex and difficult to inter-
pret evolutionary history with multiple speciation and duplication events (e.g. HACD3/
R10E4.9). While the two genes in these complex families with the least sequence divergence are
technically the LDO, the relationship between other family members, particularly when
attempting to infer functional relationships from orthology, is ambiguous. In these cases, direct
experimental examination is necessary to confirm functional relationships between orthologs.
By considering consensus predictions from multiple prediction strategies, WORMHOLE pro-
vides a disciplined strategy for selecting genes prior to these analyses.

Fig 7. WORMHOLE SVMs improve prediction of FOSTA FEPs over constituent algorithms and voting to a degree dependent on the
evolutionary separation of the compared species. (A) Precision-recall performance charts for FOSTA FEP predictions made between vertebrate
and invertebrate species separated into categories based on evolutionary distance. Points or lines represent the mean performance of the 17
constituent algorithms (black), BLASTp reciprocal best hits (RBHs) (red), voting (green), WORMHOLE SVMs (blue), or WORMHOLE RBHs (cyan)
at predicting FOSTA FEPs. Lines are generated by sampling the complete range of possible threshold values for each confidence score type.
Colored points indicate the performance for specified threshold values (blue numbers) on each line. (B) Box and whisker plot representing the
harmonic mean of precision and recall for each of the 17 constituent WORMHOLE algorithms, voting, BLASTp RBHs, WORMHOLE SVMs, and
WORMHOLE RBHs when predicting FOSTA FEPs each pair of query and target species. Ortholog prediction methods are ordered by median
harmonic mean. For voting and SVMs, values represent the maximum harmonic mean for each pair of query and target species (WORMHOLE
Score� 0.5).

doi:10.1371/journal.pcbi.1005182.g007

Table 4. Gene ontology (GO) term and enzyme classification (EC) similarity for predictions by PANTHER LDOs, WORMHOLE SVMs, and WORM-
HOLE RBHs. SVMs and RBHs datasets contain gene pairs with WORMHOLE Score� 0.5.

Dataset Query Species Target Species # LDOs GO Term Conservation
(Schlicker Similarity)

# Enzyme LDOs EC Conservation
(Schlicker Similarity)

Mean 95% Conf. Mean 95% Conf.

PANTHER LDOs all all 23600 0.497 0.0030 5934 0.988 0.0019

WORMHOLE SVMs all all 33865 0.486 0.0024 8132 0.977 0.0023

WORMHOLE RBHs all all 26082 0.497 0.0028 6521 0.984 0.0021

PANTHER LDOs invertebrate invertebrate 4111 0.398 0.0064 607 0.985 0.0069

WORMHOLE SVMs invertebrate invertebrate 5545 0.398 0.0056 836 0.977 0.0070

WORMHOLE RBHs invertebrate invertebrate 4569 0.399 0.0061 684 0.981 0.0069

PANTHER LDOs vertebrate vertebrate 8335 0.549 0.0050 2654 0.998 0.0013

WORMHOLE SVMs vertebrate vertebrate 9354 0.541 0.0047 2820 0.997 0.0018

WORMHOLE RBHs vertebrate vertebrate 8865 0.547 0.0048 2748 0.997 0.0017

PANTHER LDOs vertebrate invertebrate 11154 0.496 0.0043 2673 0.979 0.0037

WORMHOLE SVMs vertebrate invertebrate 18966 0.484 0.0032 4476 0.965 0.0037

WORMHOLE RBHs vertebrate invertebrate 12648 0.496 0.0040 3089 0.973 0.0039

doi:10.1371/journal.pcbi.1005182.t004
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Taken together, these examples suggest that, with the PANTHER LDOs as reference and
the additional information provided by the constituent algorithms, the WORMHOLE SVMs
add clarity to difficult-to-distinguishedge cases where orthology is ambiguous based solely on
an examination of available ortholog prediction strategies or voting-based meta-tools. They
also help define the limits of the current SVM models around gene families with complex evo-
lutionary history involving multiple speciation and duplication events that are not clearly
resolved by current phylogenetic models.

WORMHOLE web access

To provide convenient access to WORMHOLE LDO predictions, we developed a web tool that
can be accessed publicly at http://wormhole.jax.org/. The web tool allows users to rapidly
query the WORMHOLE database for LDO predictions between the six species, including

Fig 8. WORMHOLE SVMs produce an expanded set of LDOs while maintaining functional similarity relative to PANTHER LDOs.
Conservation of GO term annotation between genes in each gene pair is plotted against the number of gene pairs contained with each dataset
for PANTHER (green point), all other constituent algorithms (black points), PANTHER LDOs (red points), WORMHOLE SVMs (blue lines), and
WORMHOLE RBHs (cyan points). Points or lines indicate mean, and error b ars or colored regions represent 95% confidence intervals, for
Schlicker similarity in GO terms between genes (see Materials and Methods).

doi:10.1371/journal.pcbi.1005182.g008
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options to manually define the WORMHOLE score threshold, exclude all but the highest scor-
ing predicted LDOs for genes with multiple mappings, and select only WORMHOLE RBHs.
Genome-wide ortholog predictions between each pair of species are also available for
download.

Discussion

The past two decades have seen the accumulation of a vast wealth of genetic information across
thousands of species. On the heels of this accumulation, our ability to identify common genetic
features between genomes has steadily improved, engendering dozens of methods for predict-
ing orthologs based on sequence similarity, phylogenetic tree structure, and functional interac-
tions. Here we introduce WORMHOLE, a novel application of machine learning to the
problem of LDO prediction. In this tool we have taken advantage of the variety of available
ortholog prediction strategies to develop a meta-tool that integrates predictions from many
sources to specifically generate LDO predictions between six commonly used model organisms.
The use of machine learning allows WORMHOLE to leverage the unique strengths of each
method and the synergistic qualities between prediction methods to optimize performance and
provide LDO predictions with higher confidence than other currently available methods, par-
ticularly when applied to predict LDOs between distantly related species.

Multilayer machine learning approach

In developing WORMHOLE we have taken a supervised machine learning approach to LDO
prediction that combines and augments current methods by adding a second layer that intelli-
gently aggregates the predictions of many ortholog predictors into a compound LDO predic-
tion. Multilayer methods are standard in machine learning and were originally biologically
inspired. For example, the visual cortex of primates is organized into a hierarchy of neuron lay-
ers that successively capture higher order features of the visual field as the stimulus travels
deeper into the brain. The earliest layers of the visual cortex capture relatively simple features
of a scene like spots of relative brightness or darkness, intermediate layers aggregate these low-
level features into object boundaries, while the highest layers relate these boundaries to seman-
tic object categories stored elsewhere in the brain allowing for object recognition.

The multilayer structure of WOMRHOLE is analogous. In the case of WORMHOLE, the
primitive features (e.g. bright and darks spots in the visual field) are represented by prior bio-
logical knowledge, such as sequence similarity, physical interactions between the protein prod-
ucts of genes, evolutionary distance between sequences, and known mutation rates as a
function of taxonomy. The first layer of WORMHOLE—the 17 constituent algorithms—trans-
forms these primitive features into intermediate features consisting of preliminary predictions
of orthology between pairs of genes (analogous to the object boundaries in the visual cortex).
These intermediate features individually are not always sufficient to distinguish LDOs, indeed
the constituent algorithms do not intend to make such a prediction (see below), but each is a
unique assessment of the many biological features that are relevant for such predictions. The
second-layer aggregation operation integrates these preliminary predictions of the individual
algorithms as input features for SVM classifiers, using the patterns in these features to recog-
nize true LDOs (as the visual cortex recognizes objects from object boundaries) (Fig 1). This
second layer is separated from the raw input data (genetic sequence) by the orthology predic-
tions made by the constituent algorithms, combining them in an intelligent way to make LDO
predictions.

We stress that the constituent algorithms do not intend to explicitly predict LDOs. Rather,
they predict orthology by applying various statistical criteria to input data including phylogeny,

WORMHOLE: Machine-Learned Least Diverged Orthologs

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005182 November 3, 2016 22 / 35



sequence alignment, and/or functional annotation that are algorithm-specific. WORMHOLE
uses the orthology calls of each algorithm as features that may be relevant to predicting LDOs.
Indeed, LDOs are a specific and rather small subset of all orthologs. The extent to which any
constituent algorithm’s ortholog or FEP predictions align with the PANTHER LDO reference
set is a function of the methodology and the orthology definition used by that algorithm. Nev-
ertheless, we can treat the orthology calls of the constituent algorithms as predictions of LDOs.
If this assumption is not valid for a specific algorithm, the SVM will simply assign a low weight
to that algorithm based on the observed poor performance of that algorithm at predicting
PANTHER LDOs (e.g. Isobase, Fig 5A). From this point of view the constituent algorithms dis-
play wide variation in their precision and recall on the reference set; some are very conservative
and precise, while others have high recall at the cost of calling many non-LDOs. On this basis
we suspected that a simple voting strategy would be a useful heuristic for capturing likely
LDOs by aggregating over a range of predictions and filtering out pairs that result from algo-
rithm-specific errors or an overly broad orthology definition. Indeed, this voting strategy is
enriched for LDO prediction compared to the constituent algorithms as it improves precision
and recall over the constituent algorithms when predicting the PANTHER LDO set (Fig 2).
More directly, the vote counts of PANTHER LDOs are significantly higher than non-LDOs (S6
Fig), demonstrating that voting is a discriminative criterion for LDO identification. While the
performance improvement is species-dependent, voting achieves higher precision at a fixed
value of recall (and vice versa) in nearly all cases.

The variation in precision and recall of the constituent algorithms demonstrates that giving
each algorithm equal weight in the vote count is not optimal. Conservative algorithms that pre-
dict fewer orthologs but more often identify LDOs should be given higher weight. This raises
the question of how to apportion weights to algorithms. One strategy would be to try to identify
commonalities directly and construct weights “by hand”, but this runs the risk of incorporating
our personal biases. Instead, we learned the weights from a training set of examples of true and
false LDOs using the SVM algorithm (see Materials and Methods). The SVMs clearly outper-
form the simple voting by learning which algorithms are more trustworthy and giving them
higher weight.

“LDO-like” gene pair validation and functional cross-validation

In any machine learning application, the scope is defined exclusively by the training dataset.
We trained our models on the PANTHER LDOs, a set of high quality LDO predictions.
Because PANTHER LDOs represent a conservative set of closely related genes pairs, and
because there exist edge cases for which evolutionary information becomes difficult to parse,
we anticipated that the PANTHER LDOs were not comprehensive in identifying all true
LDOs. Indeed, these edge cases increase in frequency for distantly related genomes that contain
many duplication-post-speciation events in both lineages. PANTHER LDOs are very likely
true positive LDOs, have high functional conservation, and they are more or less representative
of true LDOs. However, because PANTHER LDOs are conservative, they are not comprehen-
sive, making them a suitable reference set for predicting a larger set of LDOs. The central
assumption of WORMHOLE is that we can learn a signature identifying true LDOs by inspect-
ing the PANTHER LDOs. Our predictions are thus “PANTHER-LDO-like” as far as the input
features to the SVM are concerned. We have employed four strategies to ensure that the
WORMHOLE predictions are sensible: 1) nested cross-validation, which prevents overfitting
on the training data, 2) estimation of evolutionary and sequence divergence between predicted
LDOs, 3) prediction of known functionally equivalent proteins using a distinct set of high con-
fidence FEPs (the FOSTA database), and 4) assessment of functional relatedness by measuring
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GO term conservation between predicted LDO gene pairs (using the community standard
benchmarking service provided by QfO). Our results on the evolutionary and sequence diver-
gence between WORMHOLE LDOs and RBHs are a direct test of “least divergence” between
the predicted ortholog pairs. WORMHOLE LDOs and RBHs improve the PANTHER LDOs
on these measures by: 1) expanding to a larger set of predicted LDOs without compromising
the small divergence between predicted LDOs, and 2) excluding a subset of PANTHER LDOs
that have significantly higher divergence than is typical of the PANTHER LDOs.

The tests of functional conservation and equivalence provide a completely independent
assessment of the WORMHOLE predictions, but their results have to be interpreted with cau-
tion. First, as noted above, orthology is related, but not identical, to functional equivalence. Sec-
ond, functional annotation of proteins is much less complete than predicted orthology. This is
because sequence data are much more readily available than functional data and orthology can
often be inferred with high confidence independent of any functional information. The SVMs
perform better than voting and the constituent algorithms in predicting the FOSTA FEPs (S3
Fig). This relative comparison is what is important. The PR-curves for the SVMs tested on the
FOSTA FEPs must be understood in light of the fact that many FEPs are likely to be missing
from FOSTA. Likewise, when considering the conservation of functional annotations provided
by QfO, there are many “missing” functional annotations, so performance has to be considered
in a relative sense. The WORMHOLE RBHs have comparable functional similarity scores to
the PANTHER LDO reference set, but WORMHOLE makes a substantial number of novel
calls (Table 3, Fig 8 and S4 Fig). These novel calls are particularly important in distant species
comparisons, where the methodology used to identify PANTHER LDOs is conservative.
WORMHOLE employs complementary information not available to the PANTHER algorithm
to improve confidence and expand the number of LDOs predicted. The functional cross-vali-
dation results suggest that WORMHOLE-predicted LDOs are sensible candidates.

Many of the WORMHOLE predictions are not one-to-one mappings, as required by the
strict definition of an LDO. This can be interpreted simply as the expected “dead weight loss”
of the machine learning strategy; the final model cannot reasonably be expected to perfectly
predict the known LDOs and non-LDOs. An alternative interpretation is available when we
observe that some LDOs will be less divergent from their non-LDO orthologs than others.
Indeed, some genes will have multiple orthologs that are highly similar in both sequence and
function, and selecting the LDO will amount to making an extremely fine distinction. These
LDOs will be more difficult to separate using our strategy, but also much more functionally
similar. The functional cross-validation shows that this is exactly what happens. Among the
non-PANTHER LDOs (genes pairs in the WORMHOLE database, but not part of the PAN-
THER LDO dataset), a significant fraction lies within the larger PANTHER database (Fig 5A).
These are the false positives that could not be reliably distinguished from true LDOs by the
SVM during training. The functional cross-validation directly compares the WORMHOLE
predictions to both the PANTHER LDOs and the full PANTHER set. The WORMHOLE pre-
dictions retain comparable scores to PANTHER LDO while calling many more pairs and pro-
ducing better scores than other methods that call similar numbers of pairs. Simultaneously,
WORMHOLE has higher performance than the full PANTHER set. We stress that this occurs
purely as a side benefit of training an SVM to recognize LDOs from non-LDOs and not because
WORMHOLE has explicitly included additional functional information beyond that contained
in the first-layer algorithms.

Depending on the purposes of user, these functionally similar multiple mappings may be
useful per se. A limitation inherent to the strict definition of an LDO as the single least diverged
gene pair in an ortholog group is that it will necessarily fail to identify cases where a lineage-
specific duplication results in redundant genes that are both functionally equivalent to the gene
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in the other species. Our functional data suggests that this is not a rare occurrence, as WORM-
HOLE predicts many multiple mappings that are enriched for functional conservation near the
same level as the LDOs. However, there are two filters that a WORMHOLE user can use to sift
through multiple hits to potentially identify the true LDO. First, within a family of hits the pair
with the highest WORMHOLE score is likely to be the LDO (Fig 5C). An even stricter criteria
is to select the gene pair with the reciprocal highest score (i.e. the WORMHOLE RBH), should
it exist. However, some instances of multiple hits arise because the candidates have the exact
same vote patterns, and hence the same WORMHOLE score. A second filter when considering
multiple mappings is to use auxiliary criteria, e.g. highest-quality sequence alignment, indepen-
dent of WORMHOLE to identify the LDO, which is beyond the scope of the WORMHOLE
web tool.

Cross-validation across species and general orthology

A priori, a highly tuned model to predict LDOs in one species pair might not have any predic-
tive power for unrelated species. However, we find that a model trained on one species pair
does perform well when applied to predict LDOs between other species pairs (Fig 3 and S3
Table). This strongly suggests that the WORMHOLE SVMs are identifying patterns in the con-
stituent algorithm predictions that are indicative of LDO status in general and not just in the
species pair used to train the model. This property points to broader applicability of the super-
vised machine learning framework and suggests that LDOs can be inferred in a species-inde-
pendent manner. This is an intriguing prospect for future work.

High quality candidate LDOs from WORMHOLE

An examination of novel LDO predictions made by WORMHOLE in gene pairs with ambiguous
orthology status (Table 5) suggests that the WORMHOLE SVMs are able to parse non-intuitive
information provided by the voting patterns in the constituent algorithms to provide clarity in
distinguishing orthology. WORMHOLE identifies a number of novel LDOs in this realm, picking
the BLASTp RBH in most cases. A few cases of disagreement between WORMHOLE and PAN-
THER or BLASTp indicate that there remains room for improvement by adding additional infor-
mation or updating reference LDO sets in future iterations of WORMHOLE.

Conclusions and future directions

WORMHOLE is the first machine learning meta-tool developed for the problem of predicting
LDOs. We demonstrate the ability to improve LDO prediction using SVM classifiers. A key
advantage to our approach is that it is a “meta-heuristic”, meaning that, in principle, any set of
input algorithms can be used in Layer 1 and any user-preferred reference set and classification
algorithm can be used in Layer 2. As more data become available and ever more sophisticated
ortholog prediction tools are developed, the multilayer machine learning approach can grow to
accommodate such innovations in the field. This work represents a starting point for several
potential lines of future work. While WORMHOLE considers only the predictions of other
orthology prediction methods, machine learning classifiers can accept any form of relational
data for a given pair of potential orthologs that can be appropriately represented as input,
allowing for consideration of information not implicitly captured in the constituent algorithms.
In principle, future adaptations of WORMHOLE may include direct information about
sequence similarity (e.g. alignment statistics), functional comparison (e.g. GO term conserva-
tion scores), or even more obscure biological information (e.g. relative expression levels in spe-
cific tissues). Beyond model systems, our results show that training a model on examples from
one species pair generalizes well to other species pairs (Fig 3). It should be possible to use this
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property to make predictions in species not included in the design of WORMHOLE. Many
current ortholog prediction projects make predictions for very large numbers of species. In
principle, the machine learning framework can augment these predictions by, for example,
training SVM models on a set of well-characterized and relevant models systems and using the
predictions of the SVM models for less-characterized species. Some meta-tools (e.g. MOSAIC
and MARIO) already use voting as a pre-processing step prior to sophisticated sequence-based
analyses. Replacing simple voting with trained SVMs could supply candidates for sequence
analysis at both a high level of sensitivity and specificity. The scope is only limited by availabil-
ity of data and computational resources.

Materials and Methods

Source data

Ortholog and FEP datasets were acquired from the online repositories of each source database,
in OrthoXML format when available. Web addresses, access dates, and version numbers for
the 17 ortholog prediction datasets used to train WORMHOLE SVMs are provided in Table 1,
and for all other source data in S6 Table. In building models, we were able to simply include all
predictions generated by each tool under default settings in most cases. For EggNOG and Iso-
base, tool-specific considerations motivated additional effort.

EggNOG. EggNOG is a graph-based orthology prediction tool that builds orthologous
groups (OGs) based on all-by-all similarity search followed by clustering using best-hit trian-
gles between proteins from multiple species [17]. EggNOG groups proteins based on the
MRCA within the context of the selected taxonomical group, allowing a hierarchy of OGs to be
constructed based on the taxonomical range of the species included at each level. Two manu-
ally-curated categories are included that fall near the top of the hierarchy: Clusters of OGs
(COGs), which include species across three kingdoms—Archaea, Bacteria, and Eukarya—and
clusters of eukaryotic OGs (KOGs), which include a broad range of eukaryotic species. Non-
supervised OGs (NOGs) form third category that represent automatically generated OGs that
consider only groups of species within a specified taxonomical group (e.g. nemNOGs contain
only nematode species). WORMHOLE considers EggNOG ortholog predictions based on
COGs, KOGs, and Eukaryotic NOGs (euNOGs) as three independent categories (labelled Egg-
NOG-COGs, EggNOG-KOGs, and EggNOG-NOGs in the remainder of this publication). The
euNOGs were selected as the narrowest category that includes all six WORMHOLE species. In
principle, the most appropriate taxonomic level to use should be dependent on the specific pair
of species compared in a given query (e.g. for human-worm ortholog prediction, the bilaterial
biNOGs should be used). As a consequence of only considering euNOGs, the input provided
to WORMHOLE by the EggNOG-NOGs category will be less conservative for ortholog predic-
tions between closely related species, such as humans and mice. The WORMHOLE classifiers
will therefore give EggNOG-NOGs a lower weight in the final confidence score. Including a
different taxonomic level for each pair of species would likely improve performance, but would
add complexity to the construction of the database, and we opted to proceed with euNOGs
across species for the initial presentation of WORMHOLE.

Isobase. Among the tools queried by WORMHOLE, Isobase is unique in its use of PPI
networks to predict FEPs. Underlying the FEP prediction in Isobase is the IsoRankN algorithm,
which uses protein sequence and interaction data to align PPI networks and generate clusters
of functionally related proteins. The Isobase web tool allows genetic interaction (GI) data to be
considered in addition to PPI data, employing the IsoRankN2 algorithm to simultaneously
align PPI and GI networks, resulting in a set of FEP clusters distinct from that obtained consid-
ering PPI data alone. However, unlike the PPI data, species-wide ortholog predictions that
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include GI data are not made available for download on the Isobase website. Based on an infor-
mal survey of a number of proteins of interest using the Isobase web tool, we found that the
FEP predictions that included GI data were clearly distinct from those including only PPI data.
The pattern of ortholog predictions based on GI networks were not represented by any other
selected prediction algorithm and thus potentially valuable as input to the WORMHOLE
machine learning classifiers. This is particularly true in the cases of yeast and fruit fly, where a
substantial quantity of genetic interaction data is available. In order to allow WORMHOLE to
benefit from the unique aspects of this method, we applied IsoRankN and IsoRankN2 to gener-
ate updated ortholog predictions using current protein and genetic interaction data from 5
sources: the Biological General Repository for Interaction Datasets (BioGRID) [34], the Data-
base of Interacting Proteins (DIP) [35], Human Protein Reference Database (HPRD) [36], the
IntAct molecular interaction database [37], and the Molecular INTeraction database (MINT)
[38]. Two independent sets of ortholog predictions were generated, one using IsoRankN and
only considering PPI data (IsoRankN-PPI) and the other using IsoRankN2 to co-align PPI and
GI data (IsoRankN2-GI). When compared, the three IsoRankN-based datasets (Isobase, Iso-
RankN-PPI, and IsoRankN2-GI) contained overlapping but distinct sets of ortholog predic-
tions, so we opted to include all three in WORMHOLE for further analyses.

Including the three EggNOG categories, Isobase, and the two distinct IsoRankN categories,
WORMHOLE considers input from 17 separate ortholog datasets. When the ortholog pairs
predicted in these datasets are compared to the PANTHER LDOs, they display a wide range of
precision and recall (Fig 2A).

Reference LDO dataset. PANTHER LDOs were selected as a reference set for high-confi-
dence LDOs. PANTHER LDOs encompass all one-to-one ortholog predictions from the PAN-
THER database and include the single least diverged pair of genes from one-to-many and
many-to-many ortholog predictions [7]. The PANTHER LDOs provides a strict, clearly
defined set of high-confidence ortholog pairs that is suitable for training an SVM classifier.

Reference FEP dataset. A testing set of known FEPs was acquired from the Functional
Orthologues from Swiss-Prot Text Analysis (FOSTA) database. The FOSTA database is pro-
vided in XML format and was converted to plain text using in-house Matlab scripts. The
FOSTA database contains high confidence FEPs based on text analysis of Swiss-Prot annota-
tions and thus represents an assessment of FEP at a high level of manual curation by experts.
Each FOSTA FEP is anchored by a human protein; FEPs between non-human species were
inferred by a co-annotation to a single human protein.

Reference identifiers. In order to compare data between sources, all protein and gene
identifiers were mapped to a common set of reference identifiers. We selected Ensembl Gene
IDs in Ensembl release 77 as the primary reference database. In cases where a gene or protein
was not present in the Ensembl database, identifiers were mapped to National Center for Bio-
technology Information (NCBI) Entrez Gene IDs or identifiers from organism-specific data-
bases (e.g. WormBase for C. elegans). Mapped genes and ortholog predictions from all sources
were used to build the WORMHOLE database.

Voting, support vector machines, and cross-validation

As a first-order assessment of confidence in a given predicted ortholog pair we employ simple
voting, a straightforward tally of the number of constituent algorithms that predict that pair.
To improve upon simple voting, we applied machine learning to differentially weight the influ-
ence given to each algorithm based on its performance in predicting the reference LDOs. Spe-
cifically, let c denote a cLDO and let xc ✏ {0, 1}17 denote the 17-dimensional binary vector of
ortholog calls from each of the 17 constituent algorithms for c (i.e. xc

i denotes the 0/1 prediction
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of the ith constituent algorithm). An SVM assigns a weight, wi, to predictions made by each
constituent algorithm based on the individual performance of that algorithm at reproducing
the PANTHER LDOs and defines a score for each cLDO, c:

raw SVM scoreÖcÜ à
X17

ià1

wixc
i � b

where the sum is taken over the 17 constituent algorithms, wi is the weight assigned to the ith

algorithm, and b is an offset that defines the boundary between positive and negative predic-
tions. The parameters {wi,b} are learned from a set of labeled training examples. Note that if
the offset is zero and all weights equal to one, then the SVM formula corresponds exactly to
simple voting. Thus, the SVM is a weighted voting scheme where the weights are tuned to the
training data. We fit the SVM classifiers using the R package “e1071”, which is available on the
Comprehensive R Archive Network (http://cran.r-project.org).

In machine learning a key issue in model fitting is “overfitting”, i.e. setting the model
parameters in such a way that the model performs well on the training data but fails to general-
ize to new data. The SVM has a single hyperparameter (i.e. a parameter that defines the fitting
of the model, but not the model itself), called C that can be tuned to prevent overfitting. The
parameter C defines the penalty for misclassifications and balances the fit to the data against
generalizability [39]. For each combination of query and target species, we employed nested
10-fold cross-validation (nested CV) [40] to choose C. Nested CV splits the model selection
process into an inner CV to select model parameters and an outer CV to estimate performance
of the selection procedure. The outer CV, first randomly separates the data into 10 equal parts,
trains the model on 9 parts, and tests the performance of the resulting model on the withheld
part. The process is then iterated, withholding each 10% of the data once for testing. During
each iteration of the outer CV, the model-training step is carried out using an inner CV. The
90% of the data used for training is further subdivided into 10 parts for standard CV. Within
each inner CV iteration, C was chosen from a logarithmic vector, C ✏ {4−2, 4−1, 40, 41, 42}, to
maximize the average testing accuracy (fraction of correct classifications) on the 10th inner CV
parts. The inner-CV-tuned model is then tested on the 10% of the data that were held out for
the outer CV. All assessments of generalization performance (precision, recall, harmonic
mean) were estimated by their mean and standard error of mean over the 10 outer CV itera-
tions. In this way, the inner CV ensures that the model parameters are not overfitting the idio-
syncrasies of the training data, while the outer CV provides an estimate of the robustness of the
model selection procedure when applied to novel data that were completely unseen by the
model selection procedure during training.

Segregation of training data into training and test parts for cross validation requires care to
ensure that each part is truly independent. Because there were many more negative examples
than positive, we partitioned the two classes separately so that each part had the same propor-
tion of positive and negative examples. We further ensured that all candidate ortholog pairs for
a given query gene were assigned to a single part. We examined the effect of stratifying ortholog
pairs into folds by gene family; however, while family-wise stratification resulted in a small
increase in the variance of precision and recall across folds in the outer cross-validation, it did
not affect either the overall quantitative performance of WORMHOLE or the qualitative con-
clusions reached in this work. Because the two strategies were qualitatively indistinguishable,
we proceeded with the simpler, gene-wise stratification.

To compare SVM models between species-pairs (Fig 5B), we computed the Pearson correla-
tion between the weight vectors, w, for each model. This correlation encodes whether or not
the weight vectors assign high weight to the same set of constituent algorithms. For highly
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similar models this correlation is close to one, whereas for highly dissimilar models this corre-
lation is close to zero.

Performance assessment

As primary metrics of performance we evaluated recall (R) and precision (P). Recall is the frac-
tion of the total number of correct ortholog pairs that are predicted by an algorithm, formally
defined as:

R à TP

TP á FN

while precision is the fraction of the total number of predictions made by an algorithm that are
correct:

P à TP

TP á FP

where TP is the number of true positives, or the number of correct ortholog pairs predicted by
an algorithm, FN is the number of false negatives, or the number of correct ortholog pairs not
predicted by an algorithm, and FP is the number of false positives, or the number of incorrect
ortholog pairs predicted by an algorithm. These values are calculated by comparing the pairs of
orthologs predicted by each algorithm to the reference ortholog dataset for a given pair of
query and target species. A single performance metric is often useful for comparing a large
number of predictions. In these cases we used a related metric, the harmonic mean of precision
and recall (F), defined as:

F à 2PR
P á R

F provides a single measure that balances precision and recall.

Scaling WORMHOLE confidence scores

The harmonic mean weighs P and R simultaneously and equally to summarize classification
performance. A more flexible family of measures are the β-harmonic means defined by:

Fb à
Ö1á b2ÜPR
b2P á R

The β-harmonic means are a family of measures that depend on a parameter, β, which balances
the importance of recall relative to precision. The measure F1 is simply the harmonic mean
(defined above). The measure F0.5 gives recall half the priority of precision, while F2 gives recall
twice the priority of precision.

The raw confidence values returned by each SVM model (or voting) cannot be compared
across species pairs because the assigned SVM weights are specific to each species pair. To allow
such comparisons, we normalized the raw SVM scores to a scale that is directly linked to the per-
formance of the model. Specifically, we identified the thresholds T within the raw scores for
which the precision and recall at T maximizes Fβ for β ✏ {0.125, 0.25, 0.5, 1, 2, 4, 8}. These thresh-
olds are mapped onto the confidence scores 0.9375, 0.875, 0.75, 0.5, 0.25, 0.125, and 0.0625,
respectively. We then interpolated that the map from raw SVM scores to confidence scores using
monotonic Hermite cubic spline interpolation [41], which is implemented in the R function ‘spli-
nefun’. Thus, the vote and SVM scores are scaled in such a way that applying a threshold of 0.5
(i.e. selecting all ortholog pairs with scores greater than or equal to 0.5) maximizes F for balanced
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precision and recall. Doubling β halves the distance toward 0.0/1.0 in the confidence scores. For
example, a confidence threshold of 0.75 gives precision twice the weight of recall and a threshold
of 0.875 gives precision four times the weight of recall. Conversely, a confidence threshold of 0.25
gives recall twice the weight of precision. We term the confidence score that scales simple voting
the Vote Score and the confidence score that scales the raw SVM scores the WORMHOLE Score.

In a few cases, the score given to an ortholog pair differs depending on which species is used
as query and which is used as target (e.g. a pair consisting of a human and worm gene may
receive a different score if a human-to-worm query is made than when a worm-to-human
query is made). This is a result of the way WORMHOLE is constructed, with a different SVM
model used for each combination of query and target species. In order to harmonize scores
with respect to direction of inquiry, the score given to each pair of orthologs by each Layer 2
WORMHOLE method was averaged between directions.

Evolutionary distance and BLASTp bit scores

Evolutionary distance between genes was estimated for the longest protein encoded by each
gene in a pair. Genome-wide protein sequences were obtained from Ensembl BioMart for each
species [19]. All protein pairs between species were aligned using the pairwiseAlignment() func-
tion in the R package “Biostrings” [42], which implements quality-based alignment as
described by Malde [43]. Evolutionary distance was calculated for each alignment using the
dist.ml() function in the R package “phangorn” [44] using the BLOSUM62 substitution matrix.
Both R packages are available on the Comprehensive R Archive Network (http://cran.r-project.
org).

BLASTp bits scores and RBHs were determined by aligning each protein sequence against
each target genome with NCBI BLAST+ (acquired from http://www.ncbi.nlm.nih.gov/blast;
Table 1) using the following command options:

blastp �query xxyy:fa �subject xx:fa �out xx�yy�2:txt �outfmt 6 �max hsps 1 �evalue 1e�4

where “-query” and “-subject” specify input files in FASTA format, “-out” specifies the output
file in text format, “-outfmt 6” requests BLASTp hits to be reported in a pairwise table with
BLAST statistics, “-max_hsps 1” limits the output to a single report per matched protein pair,
and “-evalue 1e-4” sets a maximum threshold on E-value for reported matches. The placehold-
ers “xx” and “yy” indicated two letter abbreviations for species names (e.g. “ce” abbreviates
Caenorhabditis elegans).

Functional assessment using the Quest for Orthologs Benchmarking
Service

The QfO Benchmarking Service tool accepts lists of predicted ortholog pairs and returns sev-
eral measures of performance. We used this service to compare predictions made by WORM-
HOLE to those made by the PANTHER LDOs and the constituent algorithms for three
performance criteria described by Altenhoff and Dessimoz [33], which are described briefly
below. QfO provides several publicly available datasets for comparison, many of which are
included as constituent algorithms in WORMHOLE. To minimize potential bias introduced by
differences in the version of each dataset used in QfO vs. WORMHOLE, we independently ran
each QfO performance metric on the set of ortholog pairs predicted in each constituent algo-
rithm, as included in the WORMHOLE database. Each ortholog dataset (WORMHOLE, PAN-
THER LDOs, and constituent algorithms) was mapped to the QfO reference proteome and
uploaded to QfO for analysis.
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Gene-speciestree discordance. Gene-species tree discordance is a measure of the dis-
agreement between constructed phylogenetic gene and species trees. Because orthologs are
gene pairs that diverge through speciation, the gene and species trees should have the same
topology. Gene trees are constructed from the provided gene pairs using accepted species trees
and the difference in topology between gene and species tree is quantified by computing the
Robinson-Foulds (RF) split distance, defined as the normalized count of bipartitions in one
tree but not the other. The tool also calculates the fraction of constructed gene trees that do not
match the species tree.

Gene ontology term conservation. GO term conservation compares GO annotations
between genes and assigns a similarity score. This test requires that both genes have at least one
GO annotation. We report the mean Schlicker similarity, a similarity score that ranges from 0
(completely dissimilar) to 1 (identical). Schlicker similarity measures the concordance of GO
term annotation between genes using a probabilistic formula related to the GO hierarchy [45].

Enzyme classification conservation. The enzyme classification (EC) conservation test
functions similarly to the GO term conservation test, except that similarity is assessed between
EC numbers rather than GO terms. As with GO term conservation, EC conservation requires
that each gene in the predicted ortholog pair have at least one EC number, thus limiting the
test to enzymes.
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the 10 folds of the outer cross-validation (see Materials and Methods). Error bars and colored
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PANTHER LDOs are gene pairs in the PANTHER LDO training set that are excluded by the
WORMHOLE RBH criteria.
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S3 Fig. WORMHOLE SVMs improve prediction of FOSTA FEPs over constituent algo-
rithms and voting to a degree dependent on the evolutionary separation of the compared
species. Precision-recall performance charts for FOSTA FEP predictions across target species
for genes queried in yeast (A), worms (B), fruit flies (C), zebrafish (D), humans (E), and mice
(F). Points or lines represent the mean performance of the 17 constituent algorithms (black),
voting (green), or WORMHOLE SVMs (blue) at predicting FOSTA FEPs. Lines are generated
by sampling the complete range of possible threshold values for each confidence score type.
Colored points indicate the performance for specified threshold values (blue numbers) on each
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S4 Fig. WORMHOLE SVMs produce an expanded set of LDOs while maintaining func-
tional similarity relative to PANTHER LDOs. Conservation of enzyme classification number
(EC) between genes in enzyme gene pairs is plotted against the number of gene pairs contained
with each dataset for constituent algorithms (black points), PANTHER LDOs (red lines), and
WORMHOLE SVMs (blue lines). Points or lines indicate mean, and error bars or colored
regions represent 95% confidence intervals, for Schlicker similarity in EC between genes (see
Materials and Methods).
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S5 Fig. WORMHOLE SVMs produce LDOs representing an expanded set of gene trees
while maintaining similar species-treediscordance relative to PANTHER LDOs. Mean dis-
cordance between gene and species phylogenetic trees represented by gene pairs in datasets for
constituent algorithms (black points), PANTHER LDOs (red lines), and WORMHOLE SVMs
(blue lines). Points or lines indicate mean, and error bars or colored regions represent 95% con-
fidence intervals, for Robinson-Foulds (RF) distance between gene and species trees (see Mate-
rials and Methods).
(PDF)

S6 Fig. PANTHER LDOs score dramatically higher on vote and SVM confidence scores.
The number of votes (A), Vote Scores (B), or WORMHOLE Scores (C) received by PANTHER
LDOs is dramatically higher than those received by gene pairs predicted by one or more of the
constituent algorithms that are not in the PANTHER LDO set.
(PDF)
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